Scrapy-Redis爬虫贝壳网所有在售厦门二手房信息

贝壳网的反爬不算厉害,做好Referer和随机UA,并适当限制并发基本就没问题了。

分享代码,仅做学习交流用途,系列文章:

一、RedisSpider爬虫类代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
__author__ = 'Luke'
__mtime__ = '2021/06'
"""

import json
import logging
import re
import time

from scrapy.http import Request
from scrapy_redis import defaults
from scrapy_redis.spiders import RedisSpider

from ..extensions import BanThrottle
from ..items import *
from ..mongoConn import MongoDBConnection

class JDSpider(RedisSpider):

    name = "BKSpider"
    redis_key = 'BKSpider:start_urls'
    logging.getLogger("requests").setLevel(logging.CRITICAL)  # 将requests的日志级别设成WARNING

    def __init__(self):
        # 初始化
        self.mongoConn = MongoDBConnection()
        self.Requests = self.mongoConn.DBCollections['RequestItem']
        self.cats_saved = []
        self.brands_saved = []
        self.add_tast_cycle = 100866666
        # 抽取值对应的字段
        self.label_content_pairs = {
            '房屋户型': 'rooms',
            '所在楼层': 'floors',
            '建筑面积': 'area',
            '户型结构': 'house_structure',
            '建筑类型': 'building_type',
            '房屋朝向': 'direction',
            '建筑结构': 'building_structure',
            '装修情况': 'remodel',
            '梯户比例': 'elevators',
            '挂牌时间': 'time_on_sold',
            '上次交易': 'time_last_transaction',
            '交易权属': 'ownership',
            '抵押信息': 'mortgage',
            '房屋用途': 'usage',
            '产权所属': 'property_right_ownership',
            '配备电梯': 'with_elevators'
        }

    def next_requests(self):
        """
            重写next_requests方法,source_url干涸后定时自动添加任务
        """
        use_set = self.settings.getbool('REDIS_START_URLS_AS_SET', defaults.START_URLS_AS_SET)
        fetch_one = self.server.spop if use_set else self.server.lpop
        # XXX: Do we need to use a timeout here?
        found = 0
        while found < self.redis_batch_size:
            data_raw = fetch_one(self.redis_key)  # 从redis中取出内容
            if not data_raw:
                break
            data = json.loads(data_raw)  # 存入redis的内容是json,需要转化
            if "source_url" not in data:
                break
            if "dont_filter" not in data:
                data['dont_filter'] = False
            req = Request(url=data['source_url'], meta=data.get('meta'),
                          headers={'Referer': data.get('Referer')}, dont_filter=data.get('dont_filter'))  # 发出请求
            if req:
                yield req
                found += 1
            else:
                self.logger.debug("Request not made from data: %s", data)
        if found:
            self.logger.debug("Read %s requests from '%s'", found, self.redis_key)
        elif self.crawler.engine.slot.scheduler.__len__() == 0 and self.crawler.engine.slot.inprogress.__len__() == 0:
            self.feed_source_url(use_set)


    def feed_source_url(self, use_set):
        """
            按时添加任务的函数
        """
        # 最近一次添加任务时间记录在LogItem{'key': 'last_add_bk_tast'}
        last_add_bk_tast = self.mongoConn.get_log_item('last_add_bk_tast')

        if time.time() - last_add_bk_tast['value'] > self.add_tast_cycle:
            # add_tast_cycle
            input_one = self.server.sadd if use_set else self.server.ladd
            success = self.mongoConn.add_spider_tast(input_one)
            if success:
                self.logger.warning("success adding new task")
                self.mongoConn.update_log_item(last_add_bk_tast)

    def parse(self, response):
        """
            解析贝壳厦门二手房首页:https://xm.ke.com/ershoufang/
            yield 6个区的Request任务
        """
        print(response.url)
        district_urls = response.xpath('//div[@data-role="ershoufang"]/div/a/@href').extract()[0:6]
        headers = {'Referer': response.url}
        for district_url in district_urls:
            yield Request(url=self.base_url + district_url, callback=self.parse_district_list_page, headers=headers,
                          dont_filter=True)

    def parse_district_list_page(self, response):
        """
            解析贝壳厦门6个区在售二手房页面
            yield 各个街道二手房列表页面Request任务
        """
        params = {'current_page': 1}
        sub_district_urls = response.xpath('//div[@data-role="ershoufang"]/div/a/@href').extract()[6:]
        headers = {'Referer': response.url}
        for sub_district_url in sub_district_urls:
            yield Request(url=self.base_url + sub_district_url, callback=self.parse_sub_district_list_page, meta={'params': params}, headers=headers,
                          dont_filter=True)

    def parse_sub_district_list_page(self, response):
        """
            解析贝壳厦门各个街道二手房列表页面
            yield 分页Request任务
            yield 详情页Request任务
        """
        params = response.meta.get('params')
        if params and params.get('current_page') == 1:
            page_data = response.xpath('//div[contains(@class,"house-lst-page-box")]/@page-data').get()
            page_data = json.loads(page_data)
            for i in range(page_data['curPage'], page_data['totalPage']):
                # response.url case: "https://xm.ke.com/ershoufang/bailuzhou/"
                next_page_url = response.url + 'pg%s/' % str(i+1)
                headers = {'Referer': response.url}
                yield Request(url=next_page_url, callback=self.parse_sub_district_list_page, headers=headers,
                              dont_filter=True)

        house_items = response.xpath('//li[@class="clear"]')
        for house_item in house_items:
            house_base_url = house_item.xpath('./div[@class="info clear"]//div[@class="title"]/a/@href').get()
            data_maidian = house_item.xpath('./div[@class="info clear"]//div[@class="title"]/a/@data-maidian').get()
            if house_base_url and data_maidian:
                house_full_url = house_base_url + '?fb_expo_id=%s' % str(460233438474899459)
                headers = {'Referer': response.url}
                yield Request(url=house_full_url, callback=self.parse_house_info, meta={'params': params},
                              headers=headers, dont_filter=False)

    def parse_house_info(self, response):
        """
            解析贝壳厦门二手房详情页任务
            简单数据清理
            yield HouseItem
        """
        # response_url:https://xm.ke.com/ershoufang/105107607395.html?fb_expo_id=460233438474899459

        house_item = HouseItem()
        # 价格和区域
        house_item['_id'] = response.url.split('.html')[0].split('/').pop()
        house_item['price'] = float(response.xpath('//div[@class="price "]/span//text()').get())
        house_item['unit_price'] = float(response.xpath('//div[@class="unitPrice"]/span//text()').get())
        house_item['district'] = response.xpath('//div[@class="areaName"]/span[@class="info"]/a//text()').extract()[0]
        house_item['sub_district'] = response.xpath('//div[@class="areaName"]/span[@class="info"]/a//text()').extract()[1]
        house_item['resblock'] = response.xpath('//a[@class="info no_resblock_a"]//text()').get()

        # 基本属性 no_resblock_a
        if re.search('(\d{4})年建', response.text):
            house_item['year_build'] = int(re.search('(\d{4})年建', response.text)[1])

        info_li_xpathes = response.xpath('//div[@class="introContent"]/div/div/ul/li')
        for info_li_xpath in info_li_xpathes:
            content_texts = info_li_xpath.xpath('.//text()').extract()
            if content_texts[0].strip() in self.label_content_pairs:
                if type(content_texts[1]) == str:
                    house_item[self.label_content_pairs[content_texts[0].strip()]] = content_texts[1].strip().replace('\n', '')

        yield house_item

二、MongoDB数据量连接对象

文件名 mongodb.py

import configparser
import inspect
import json
import logging
import time
import pymongo
import redis
import items
from items import *

# 把items.py里面所有类名加写到这里,自动初始化mongodb数据量连接对象
all_collections = ['LogItem']

class MongoDBConnection(object):

    def __init__(self):
        # 初始化数据库连接
        cf = configparser.ConfigParser()
        cf.read('../scrapy.cfg')
        client = pymongo.MongoClient(cf.get("mongodb", "host"), cf.getint("mongodb", "port"))
        self.db = client.admin
        self.db.authenticate(cf.get("mongodb", "user"), cf.get("mongodb", "pass"), mechanism=cf.get("mongodb", "mech"))
        self.db = client[cf.get("mongodb", "db")]
        # self.db = client['Storage']
        self.DBCollections = dict()
        clsmembers = inspect.getmembers(items, inspect.isclass)
        for (name, value) in clsmembers:
            if issubclass(value, Item) and value != Item:
                self.DBCollections[name] = self.db[name]


    def update_item(self, item):
        """
            插入一条记录,
            自动根据类名判断要插到哪个表
        """
        item_class_name = item.__class__.__name__
        # if item_class_name == 'dict':
        if item_class_name not in self.DBCollections:
           self.DBCollections[item_class_name] = self.db[item_class_name]
        try:
            self.DBCollections[item_class_name].insert(dict(item))
        except pymongo.errors.DuplicateKeyError as e:
            condition = {'_id': item['_id']}
            self.DBCollections[item_class_name].update_one(condition, {'$set': dict(item)})
        except Exception as e:
            logging.critical('-=-=-=-=-mongo-update-item-exception-=-=-=-=-')
            logging.critical(e.args)
            logging.critical(item)
        return item

    def add_spider_tast(self, input_one):
        """
            添加爬虫任务的方法
        """
        params_list = {'page': 1,
                       'base_url': 'https://xm.ke.com/ershoufang/'
                       }

        start_info_list = {
            "source_url": 'https://xm.ke.com/ershoufang/',
            "Referer": 'https://xm.ke.com/',
            "meta": {'params': params_list},
            "dont_filter": True
        }

        start_info_json = json.dumps(start_info_list)  # 将字典转化为json
        if input_one:
            success = input_one('BKSpider:start_urls', start_info_json)
        else:
            redis_pool = redis.ConnectionPool(host='192.168.0.218', port=6379, password='Pyth.2021', db=0)
            redis_conn = redis.Redis(connection_pool=redis_pool)
            success = redis_conn.sadd('BKprocess:start_urls', start_info_json)  # 存入内容
        return success

    def get_log_item(self, key):
        """
            取出'key'为key的的一项LogItem,若库中无记录,则返回{'key': key, 'value': 0}
        """
        result = self.fetch_one('LogItem', filter={'key': key})
        if not result:
            result = LogItem({'key': key, 'value': 0})
        return result

    def update_log_item(self, item, update_time=True):
        """
            更新一项LogItem,默认更新'value'为当前时间time.time()
        """
        if update_time:
            item['value'] = time.time()
        self.update_item(item)

    def fetch_one(self, class_name, filter={}, sort=None, ran=False):
        """
        从class_name表中取出一条记录
        :param class_name: str, 取出数据类名/也是表名 
        :param filter: object, 过滤条件
        :param sort: object, 排序
        :param ran: bool, 是否随机
        :return: Class_name(Item)实例 or None
        """
        if ran:
            total = self.db[class_name].count(filter=filter)
            skip_count = random.randint(0, total - 1)
        else:
            skip_count = 0
        data = self.db[class_name].find(filter=filter, sort=sort).limit(1).skip(skip_count)
        # data = self.db[class_name].find_one(filter=filter, sort=sort)
        if data:
            try:
                instance = eval(class_name + '(data[0])')
                return instance
            except IndexError:
                return None
        return None

    def fetch_many(self, class_name, filter={}, sort=None, limit=0):
        """
        从class_name表中取出(limit)条记录
        :param class_name: str, 取出数据类名/也是表名 
        :param filter: object, 过滤条件
        :param sort: object, 排序
        :param limit: int, 最多取出(limit)条
        :return: [Class_name(Item)实例...] or []
        """
        datas = self.db[class_name].find(filter=filter, sort=sort, limit=limit)
        instances = []
        for data in datas:
            instance = eval(class_name + '(data)')
            instances.append(instance)
        return instances

三、MongoDB配置写到scrapy.cfg

[mongodb]
host = 192.168.0.xxx
port = 27017
user = xxx
pass = xxx
mech = SCRAM-SHA-1
db = xxx

四、items.py文件

# -*- coding: utf-8 -*

from scrapy import Item, Field

class HouseItem(Item):
    _id = Field()  # url结尾的数串
    resblock = Field()  # 禾丰新景
    price = Field()  # 636万
    unit_price = Field()  # 105930
    district = Field()  # 思明
    sub_district = Field()  # 思明
    # 基本属性
    year_build = Field()  # 2012
    rooms = Field()  # 3室2厅2卫
    area = Field()  # 60.04
    building_type = Field()  # 塔楼
    building_structure = Field()  # 钢混结构
    elevators = Field()  # 两梯四户
    floors = Field()  # 低楼层(共18层)
    house_structure = Field()  # 平层
    direction = Field()  # 南
    remodel = Field()  # 精装
    with_elevators = Field()  # 两梯四户

    # 交易属性
    time_on_sold = Field()  # 2021年06月13日
    time_last_transaction= Field()  # 2017年09月13日
    mortgage = Field()  # 无抵押
    ownership = Field()  # 商品房
    usage = Field()  # 普通住宅
    property_right_ownership = Field()  # 普通住宅

    # 清洗属性
    house_per_floor = Field()  # 一梯(几)户
    building_floors = Field()  # 总层高

class LogItem(Item):
    _id = Field()
    key = Field()  # 键
    value = Field()  # 值

五、结果

上图,一早上2万多条记录,厦门贝壳它已经干了:

Scrapy-Redis爬虫贝壳网所有在售厦门二手房信息

这样的数据是用不了的,还要进一步清理:初步清理贝壳网爬取的厦门二手房信息

突然又有其他想法:

# 其他想法:爬成交价,比较与挂牌价之间的关系 
# 其他想法:爬租房,统计租售比 

先放一放吧,这贝壳网这两个页面和二手房页面结果是不一样的,时间紧迫!

原创文章,作者:10bests,禁止任何形式转载:https://www.10bests.com/scrapy-redis-crawl-beike-xiamen/

(0)
上一篇 2021年6月23日 上午9:45
下一篇 2021年6月25日 下午11:50

相关推荐

  • 初步清理贝壳网爬取的厦门二手房信息

    接上文Scrapy-Redis爬虫贝壳网所有在售厦门二手房信息,总共爬到2.25K的在售二手房信息,这篇文章初步清晰数据,为进一步分析做准备,本文仅做交流学习用途。 系列文章: S…

    2021年6月25日
  • 美味可口冬日汤圆十大排行

    汤圆是元宵节的节日食品,也是冬日里的暖心之物。汤圆在速冻食品里有许多牌子可以选择,那么,哪些冬日汤圆美味可口呢?下面小编为您推荐美味可口冬日汤圆十大排行! 美味可口冬日汤圆十大排行…

    2021年11月7日
  • 简单分析贝壳在售厦门二手房数据(二)

    这是我的python数据可视化练手项目,数据从贝壳厦门二手房网爬取,数据已经经过清理,并且补充了经纬和地铁/BRT站信息,这是数据分析的第二部分,系列文章: Scrapy-Redi…

    2021年6月26日
  • 简单分析贝壳在售厦门二手房数据(一)

    这是我的python数据可视化练手项目,数据从贝壳厦门二手房网爬取,数据已经经过清理,并且补充了经纬和地铁/BRT站信息,系列文章: Scrapy-Redis爬虫贝壳网所有在售厦门…

    2021年6月26日
  • 百度API补完厦门二手房经纬度并找到最近的地铁站

    经纬度是二手房的重要信息,有了这些数据我们才能计算房子到最近地铁站的距离,轨道交通是影响房价很重要的数据。贝壳二手房详情页上的房子位置信息是js加载的,我们不能直接拿到,所以只能找…

    2021年6月26日
  • 贝壳在售厦门二手房数据建模

    还在写,先发布了,以表决心! 系列文章: Scrapy-Redis爬虫贝壳网所有在售厦门二手房信息 初步清理贝壳网爬取的厦门二手房信息 百度API补完厦门二手房经纬度并找到最近的地…

    2021年6月26日

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注